THE JOURNAL OF ANTIBIOTICS

PRODUCTION OF A NEW AMINOGLYCOSIDE ANTIBIOTIC BY A MUTANT OF *BACILLUS CIRCULANS*

TAMIO FUJIWARA, YASUO TAKAHASHI, KOICHI MATSUMOTO and Elji Kondo

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received for publication December 12, 1979)

A new aminoglycoside antibiotic, S-11-A, was isolated from the fermentation broth of the 2-deoxystreptamine negative (DOS⁻) mutant of *Bacillus circulans* S-11. The structure of S-11-A was elucidated as 1-deamino-1-hydroxyxylostasin, which contains an intermediate of DOS biosynthesis (S-11-P) and has resistance to some aminoglycoside-inactivating enzymes. This is the first finding of antibiotic production by a DOS⁻ mutant without any supplementation of DOS or a DOS analog, and could be described as a novel method of getting a new aminoglycoside antibiotic.

Mutational biosynthesis has widely been used to produce new aminoglycoside antibiotics, since SHIER, *et al.*¹⁾ demonstrated the utility of this method. For this purpose, many 2-deoxystreptamine negative (DOS⁻) mutants from various aminoglycoside-producing strains have been isolated, and addition experiments of many DOS analogs to culture broths have been carried out. Streptamine and 2-epistreptamine were the most convenient analogs for making new antibiotics such as hybrimycins¹⁾ and mutamicins²⁾. A DOS⁻ mutant of *Bacillus circulans* was isolated by CLARIDGE and co-workers³⁾, who showed that streptamine and streptidine could be incorporated to give butirosin-related new antibiotics. In spite of these reports, nothing has been reported about using DOS⁻ mutants without the supplementation of DOS analogs for antibiotic production. We report here on a novel method of producing a new antibiotic, S-11-A, by one of the DOS⁻ mutants of *B. circulans* in the absence of a DOS analog. This mutant strain S-11 also has the character of accumulating an intermediate of DOS biosynthesis (S-11-P, Fig. 2) in the culture broth^{4, 50}. The structure of S-11-A and the significance of S-11-A production using the DOS⁻ mutant were also discussed.

Materials and Methods

Strain

Bacillus circulans S-11 is a DOS⁻ mutant isolated from the xylostasin (XLN) producing strain Mot 3⁶). Isolation of this strain was described in the previous paper⁴).

Fermentation

The fermentation procedure, using strain S-11 in seed medium S-4 and in fermentation medium F-5 in a 30-liter jar fermenter, was the same as that for preparing S-11- P^{4} .

Isolation procedure of S-11-A

S-11-A was isolated from the culture broth by the procedure shown in Fig. 1.

Assay of S-11-A

Antibiotic activity of S-11-A was assayed using the paper disc diffusion method on an agar plate seeded with *Bacillus subtilis* PCI 219 as a test organism.

Fermented broth (Jar 4 days)	concentrated neutralized with Amberlite IR-4B(OH ⁻)
Filtrate Amberlite IRC-50 (NH_4^+) batch adsorption washed with water eluted with N NH ₄ OF Active fraction concentrated adjusted to pH 7 Amberlite IRC-50	Amberlite CG-50 (NH ₄ ⁺) column eluted with $0 \sim 0.4 \text{ N}$ NH ₄ OH (linear gradient) Active fraction concentrated Dowex 1×4 (OH ⁻) column
(NH ₄ ⁺) column washed with water eluted with NNH ₄ OF Active fraction (pH 10)	Active fraction I concentrated CM-Sephadex (NH ₄ ⁺)
Wako activated carbon column washed with water eluted with MeOH-0.05 N HCI (1:1) Active fraction	eluted with 0~0.4 N NH ₄ OH (linear gradient) Active fraction concentrated lyophilized S-11-A free base

Fig. 1. Isolation and purification of S-11-A.

¹³C NMR

¹⁸C NMR spectra were taken with a Varian NV-14 spectrometer.

Chemicals

XLN and DOS were prepared in our laboratory, and ribostamycin (RBM) was purchased from Meiji Seika Kaisha, Ltd.

Results and Discussion

DOS⁻ mutants have been thought to produce no antibiotic without the supplementation of DOS or a DOS analog. However, *B. circulans* S-11 indicates that this is not the general character of DOS⁻ mutants. The strain S-11 produced an antibiotic activity (14 mm diameter of inhibition zone) in the absence of a DOS analog. Antibiotic activity was assayed against *B. subtilis* on a peptone agar plate using 6-mm diameter paper discs. This antibiotic showed a different Rf from that of XLN on the TLC-bioautogram

(Table 2), and was designated as S-11-A. The DOS supplemented culture broth of strain S-11 (500 μ g/ml) showed a strong antibiotic activity (25.5 mm diameter of inhibition zone), whose major component was XLN. This means the strain S-11 is a DOS⁻ mutant. Since the antibiotic S-11-A was simultaneously produced as a minor component even in the DOS supplemented culture, it was supposed that S-11-A might not contain DOS in the molecule. After the strain S-11 was cultivated with medium F-5 using a 30-liter jar fermenter at 28°C for 4 days, S-11-A was isolated from the culture broth by the procedure shown in Fig. 1.

	Sulfate				N-Acetate	
Appearance	Crystalline powder			White p	owder	
Melting point	$140 \sim 170^{\circ}$	C (dec.)		>160°C	2	
Molecular formula	$C_{17}H_{33}N_3O_{11}\cdot\frac{3}{2}H_2SO_4\cdot4H_2O$			$C_{17}H_{30}N_{3}C_{3}$	$D_{11} \cdot 3(CH_3CO) \cdot 2$	H_2O
Elemental analysis		Calcd.	Found.		Calcd.	Found
	С	30.27%	30.34%	С	44.72%	44.88%
	Н	6.57	6.71	Н	7.02	7.35
	N	6.23	6.08	N	6.80	6.81
	S	7.13	6.65			
Optical activity	$[\alpha]_{\mathrm{D}}^{24.5} + 38.2 \pm 0.8^{\circ} (c \ 1, \mathrm{H_2O})$			$[\alpha]_{\rm D}^{26.0}+$	$5.8 \pm 0.4^{\circ}$ (c 1, 1	$H_2O)$
UV absorption	End absorption at 210 nm			End abs	orption at 210 r	m
Color reaction	Positive:	Ninhydrin	n, Molisch,			
		Anthrone				
	Negative:	Fehling				
Acid hydrolysis	Xylose (1 N HCl, 60°C, 30 minutes) S-11-P (6 N HCl, 100°C, 6 hours)					

Table 1. Physico-chemical properties of S-11-A.

Physico-chemical properties of S-11-A sulfate and N-acetate are summarized in Table 1. Acid hydrolysis of S-11-A afforded xylose (identified by paper chromatography) and S-11-P (identified by HPLC). This evidence strongly argues that the structure of S-11-A should be closely related to that of XLN, except the former contains S-11-P instead of DOS. ¹³C NMR chemical shifts of S-11-A compared with XLN, RBM, S-11-P and DOS (Table 3) confirmed the above conjecture. The chemical shift of C-1 of S-11-A was quite different from that of XLN, and the C-2 and C-5 carbons were also different to a much lesser extent. These differences correspond to those of S-11-P and DOS. Small shifts of other carbons, especially C-3' and C-5', to higher field may be due to the effect of the slightly lower pD of S-

11-A compared to XLN or RBM. From these results, the structure of S-11-A was elucidated as 1-deamino-1-hydroxyxylostasin (Fig. 2). According to the IUPAC-IUB tentative cyclitol nomenclature rules applied to the S-11-P moiety, S-11-A is named as 3-O-(β -D-xylofuranosyl)-4-O-(2,6-diamino-2,6-dideoxy- α -D-glucopyranosyl)-(1 L)-1,3,5/2,4-5-aminocyclohexanetetrol. Although in the latter name the numbering about the S-11-P moiety was clockwise, C-1 was the same as indicated in Fig. 2.

Table 2. T.L.C. Comparison of S-11-A with xylostasin (XLN).

0.1	Rf		
Solvent system	S-11-A	XLN	
<i>i</i> -PrOH - 28% NH ₄ OH (1:1)	0.32	0.32	
CHCl ₈ -MeOH-17% NH ₄ OH (2:1:1 upper phase)	0.53	0.46	
CHCl ₃ -MeOH-28 % NH ₄ OH - H ₂ O (1: 4: 2: 1)	0.35	0.28	

Fig. 2. Structures of S-11-A, XLN, DOS and S-11-P.

		a' NH2			0 (p	pm)	20	
NHa		HO 26' 0 HO 5' 2'			S-11-P pD 6.5	DOS pD 6.6	δ (S-11-P) $-\delta$ (DOS)	
HO 4 11/2 2		3' NH2 4	NH2 2 3 6	C-1	69.5	51.1	18.4	
HO TR		0_]	5 OH TR	C-2	33.2	30.2	3.0	
		HOTO		C-3	50.7	51.1	-0.4	
		3" 0		C-4	73.8	74.1	-0.3	
	D	UH	D	C-5	75.2	75.7	-0.5	
2-Deoxystreptamine	m K $ m NH_2$	Xylostasin	K NH ₂	C-6	77.1	74.1	3.0	
S-11-P	OH	S-11-A	OH					

For the usual mutational biosynthesis, the DOS analog has to be prepared chemically, but in this example, S-11-P could be thought of as a DOS analog, and was simultaneously produced by the strain itself along with S-11-A, so it was unnecessary to synthesize and supplement the DOS analog. If S-11-P is supplemented to the culture of one of the converter group of DOS⁻ mutants such as strain 236⁴, S-11-

Table 3. ¹³C-Chemical shifts (δ) of S-11-A compared with xylostasin (XLN), ribostamycin (RBM), S-11-P and 2-deoxystreptamine (DOS).

		$\Delta\delta$		
	S-11-A pD 4.7	XLN pD 6.6	RBM pD 7.2	δ (S-11-A) $-\delta$ (XLN)
C-1	70.0	51.2	51.2	18.8
C-2	32.7	31.7	31.2	1.0
C-3	49.0	49.7	49.6	-0.7
C-4	77.2	78.6	78.6	-1.4
C-5	85.7	86.6	86.1	-0.9
C-6	76.3	74.1	74.0	2.2
C-1′	95.8	95.8	96.1	0
C-2'	54.3	54.8	54.8	-0.5
C-3′	68.9	69.8	69.9	-0.9
C-4′	71.4	71.9	71.9	-0.5
C-5′	68.9	69.8	69.6	-0.9
C-6′	40.9	41.2	41.2	-0.3
C-1''	112.6	112.7	111.1	-0.1
C-2''	81.6	81.5	76.0	0.1
C-3''	75.3	75.2	69.9	0.1
C-4''	83.7	83.5	83.2	0.2
C-5''	61.4	61.4	61.8	0

0/

40

Fig. 4. Biosynthetic pathways of S-11-A, XLN and butirosin.

S-11-A is produced using S-11-P by the unsupplemented culture and XLN is produced by the DOS supplemented culture of the strain S-11. Strain 236 could produce butirosin by the addition of S-11-P or DOS to the culture medium. The structure in the paranthesis is not known.

P is transformed to DOS and incorporated into butirosin (Fig. 4). Thus, S-11-A could not be produced by the usual mutational biosynthetic method, unless the special DOS⁻ mutant accumulating S-11-P was used. We propose the biosynthetic pathway of S-11-A shown in Fig. 4. This is a novel method of getting a new aminoglycoside antibiotic by a mutant of a known aminoglycoside-producing strain. According to this method, the production of 1-deamino-1-hydroxyneomycin could be expected by the S-11-P accumulating DOS⁻ mutant of a neomycin producer. 1-Deamino-1-hydroxykanamycin production could also be expected by the same type of the mutant derived from a kanamycin producer.

The *in vitro* antibiotic activity of S-11-A was weaker than XLN or RBM about 8 fold (Table 4). This suggests that the C-1 amino group of DOS-containing antibiotics plays an important role for the biological activity. It is generally recognized in the aminoglycosides that the substitution of an amino group by a hydroxyl group reduces both the antibiotic activity and toxicity⁷). For example, neomycin B is more toxic than paromomycin I and kanamycin B has the same tendency by comparison with

	Resistance		MIC (µg/ml)			
	mechanism	S-11-A	XLN	RBM		
Escherichia coli NIHJ JC-2		25	3.13	3.13		
W677/R5HL	AAC(6')	>100	>100	>100		
W677/JR88	AAC(3)-I	50	6.25	6.25		
W677/JR225	AAC(3)-II	25	100	> 100		
W677/JR214	ANT(2'')	>100	> 100	>100		
W677/JR35	APH(3')-I	>100	> 100	>100		
80750	3'P	100	> 100	>100		
80750*		50	3.13	6.25		
Klebsiella pneumoniae Shionogi		3.13	0.39	0.39		
ATCC 27736		12.5	1.56	3.13		
Serratia marcescens ATCC 13880		>100	6.25	25		
Proteus rettgeri Ret-29		25	1.56	1.56		
Proteus vulgaris ATCC 6390		25	3.13	1.56		
Salmonella typhimurium ATCC 1334		50	6.25	12.5		
Staphylococcus aureus FDA 209P JC-1		50	3.13	1.56		

Table 4. *In vitro* antibacterial activities of S-11-A sulfate compared with xylostasin sulfate (XLN) and ribostamycin sulfate (RBM) in agar dilution test.

Abbreviations of resistance mechanism: AAC, aminoglycoside acetyltransferase. ANT, aminoglycoside nucleotidyltransferase. APH, aminoglycoside phosphotransferase. 3'P, a kind of 3'-O-phosphotransferase, attacking XLN, RBM and KM, but not well characterized.

* The resistance lost strain of E. coli 80750.

kanamycin A. Therefore, S-11-A can be expected to have weaker toxicity than XLN. The important finding from Table 4 is that S-11-A is active against *Escherichia coli* W677/JR225 having the aminoglycoside-acetylating enzyme, AAC(3)-II. This enzyme acetylates the C-3 amino group of many DOScontaining compounds, including XLN, but the substitution of an amino group by a hydroxyl group on S-11-A is not at the attacking site of this enzyme. Butirosin A, a compound acylated with 4-amino-2hydroxybutanoic acid at the C-1 amino group of XLN, is resistant to this enzyme. However, S-11-A has no such acyl group. Conversion of an amino group to a hydroxyl group at the C-1 position seems to be a new mode of acquiring resistance to AAC(3)-II. S-11-A is also resistant to some kind of 3'-phosphorylating enzyme of the strain *E. coli* 80750. These findings may serve as important suggestions to the study of structure-activity relationships and the modification of aminoglycoside antibiotics.

Acknowledgment

We thank Miss S. MATSUDA and Dr. K. TORI of this company for their kind suggestions on the structure elucidation of S-11-A by ¹³C NMR. We are also indebted to Dr. M. MAYAMA and co-workers of this company, for biological evaluation of S-11-A.

References

- SHIER, W. T.; K. L. RINEHART, Jr. & D. GOTTLIEB: Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc. Acad. Sci. U.S.A. 63: 198 ~ 204, 1969
- TESTA, R. T.; G. H. WAGMAN, P. J. L. DANIELS & M. J. WEINSTEIN: Mutamicins; biosynthetically created new sisomicin analogs. J. Antibiotics 27: 917~921, 1974

- 3) CLARIDGE, C. A.; J. A. BUSH, M. D. DEFURIA & K. E. PRICE: Fermentation and mutational studies with a butirosin-producing strain of *Bacillus circulans*. Develop. Industr. Microb. 15: 101~113, 1974
- 4) FUJIWARA, T.; Y. TAKAHASHI, K. MATSUMOTO & E. KONDO: Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of *Bacillus circulans*. J. Antibiotics 33: 824~829, 1980
- 5) IGARASHI, K.; T. HONMA, T. FUJIWARA & E. KONDO: Structure elucidation of an intermediate of 2-deoxystreptamine biosynthesis. J. Antibiotics 33: 830~835, 1980
- FUJIWARA, T.; T. TANIMOTO, K. MATSUMOTO & E. KONDO: Ribostamycin production by a mutant of butirosin producing bacteria. J. Antibiotics 31: 966~969, 1978
- PRICE, K. E.; J. C. GODFREY & H. KAWAGUCHI: Effect of structural modifications on the biological properties of aminoglycoside antibiotics containing 2-deoxystreptamine. Adv. Appl. Microb. 14: 243, 254 & 295, 1974